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SUMMARY 
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A computational fluid dynamics code for application to traditional incompressible flow 

problems has been developed. The method is actually a slight compressibility approach 

which takes advantage of the bulk modulus and finite sound speed of all real fluids. The 
f ini te  element numerical analog uses a dynamic differencing scheme based, in part, on a 
variational principle for computational fluid dynamics. The code was developed in order 

to  s tudy the feasibility of damping seals for high speed turbomachinery. Preliminary seal 
analyses have been performed. 

This report was prepared by Continuum, Inc. for NASA-MSFC under contract NAS8- 

35508. 
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NOMENCLATURE 

speed of sound 

incompressible specific heat 

total system energy 

bulk modulus of elasticity 
f lux  integrals, Eq. (14) 
idenity tensor 
pressure 
velocity vector 

heat transfer 
entropy 

time 
temper a t  ure 

x-, y-, z- components of velocity, respectively 

conserved variable array, Eq. (14) 
volume 
artificial compressibility 
viscosity 

kinematic viscosity 
allocation parameters, Eq. (16) 

density 
stress tensor 
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INTRODUCTION 

Leakage flow through seals in high pressure turbopumps has an important effect on the 

dynamic behavior of the pumps. The rotation of this fluid reduces the damping forces 
and generates a subsynchronous whirl instability a t  a speed of approximately twice the 
pump critical speed, as first shown by Black (Ref. 1). The Space Shuttle !!'lain Engine 
(SSME) currently operates near th i s  instability l imit .  Uprating of the SSME requires an 
increase in pump speeds, thus additional damping is required. Recently, von Pragenau 
(Ref. 2)  suggested the use of stator roughness to produce turbulent flow in the seal. The 
flow provides additional damping for the  pump, as was demonstrated analytically i n  Ref. 

2. From his work the impetus  was provided for numerical and experimental 

investigations into the damping seals. This paper discusses the  numerical modeling of 
these seals. 

A realistic analysis of the flow in the  SSME turbopumps requires an unsteady liquid flow 

solver. Historically, liquid, or incompressible solutions of the Navier-Stokes equations 
have been steady state. The continuity equation is written as 7 q = 0 ,  which 
implies an infinite sound speed, thus explicit and,consequently, unsteady methods cannot 
be obtained. This formulation also complicates the calculation of flowfield pressures, 

which are an important parameter for determining damping forces. The treatment of the 

velocity-pressure coupling then becomes of paramount importance in developing the 
numerical model for damping seals. This problem will be discussed further in the next 
section. 

- 

The numerical procedure used in the solution method is based on t h e  VAST (VAriational 
Solution of the Transport equations) code for compressible flows developed by Prozan 
(Refs. 3-5). The VAST code is a finite difference analysis which employs a dynamic 

differencing scheme based on the hypothesis of a variational principle for the governing 
equations. This formulation promotes the stability of the system and reduces 
computational requirements. To use the variational approach, the equation governing the 

velocity-pressure coupling must  be considered when deriving t h e  variational equation. 

Since turbulent flow is the mechanism which produces the additional damping i n  the seal, 

the code must include a turbulence model. There are numerous models to choose from, 
but again, when transport equation models are considered, the differencing scheme and 
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the variational equation are affected. Roughness effects must be included in any model, 

and this aspect can only be handled empirically. 

Once developed, the performance of the numerical model must be verified. Results on 

the damping seals test configuration can then be obtained and the model refined. Wi th  

the basic model, results using LOX and LH2 (liquid oxygen and liquid hydrogen) can be 
compared to the analyses of Ref. 2. These cases do not make good verification problems 

because the properties, and consequently the accuracy of results, of LOX and LH2 are 
not as well known as other fluids, such as water. The final model developed in the work 

can be used to perform parametric studies of potential SSME configurations. 

-2- 
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TREATMENT OF THE VELOCITY-PRESSURE COUPLING 

The solution of the governing equations i n  primitive variable form for incompressible 

flows has proven to be a difficult task. The number of different equation sets used is 

nearly as large as the number of researchers working in the field. This is in sharp 
contrast to the solution of compressible gas flow in which, wi th  the ideal gas assumption, 
the equations are well known. For incompressible and/or liquid flows, there is no 

comparable equation of state wi th  which t o  close the system of equations. Density, and 

consequently pressure, are usually eliminated from the continuity equation, which 
becomes a constraint on the momentum equations. Although the pressure does appear in 
the momentum equations as spatial derivatives, neither of these equations can be solved 
for pressure without introducing directional bias (Ref. 6); nor can a transient type of 

solution be developed. Thus, from the outset one is faced w i t h  llN" equations for "N + 1" 

unknowns. 

Early numerical solutions to incompressible flow avoided th is  problem by using the 

vorticity-stream function formulation, which is thoroughly treated in Ref. 6. This 
procedure suffers from many well known limitations, particularly for internal and three- 

dimensional problems (see, e.g., Refs. 6,7). With the  realistic three-dimensional 
problems which are within reach by using current and future generations of 

supercomputers, the use of these equations wil l  be severely limited. 

One of the first procedures for obtaining pressures of incompressible flows required the 

solution of a Poisson equation (Ref. 6). This equation has the form 

V 2 P = S  

where S is a non-linear function of the velocities and their first three derivatives. Also, 

Neumann  boundary conditions are required to solve Eq. (1). The solution to Eq. (1) must 
be obtained iteratively a t  each step, a very t i m e  consuming process. Another drawback 
is that the solution does not behave well when complex geometries are being studied. 

Furthermore, the solution of Eq. (1) only once a t  each t i m e  step does not properly 

account for the velocity-pressure coupling, as demonstrated i n  Ref. 8. Since it is well 
known, Bq. (1) was specifically studied for inclusion into the damping seals model; 
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however, becausc of the problems mentioned above, it was determined to be a non-viable 

a1 t ernat ive. 

A n  increasingly popular solution used in finite difference applications is the artificial 

compressibility developed by Chorin (Ref. 9). This formulation assumes an equation of 
s ta te  as 

P = P I 6  ( 2 )  

where 6 is the artificial compressibility. Using Eq. (2) t h e  continuity equation becomes 

Eq. (3) allows for 

s = o  

n explicit f ini t differ en e solution for P; however, si 

( 3 )  

ce 6 is 

technically a relaxation parameter and has no physical basis, unsteady solutions are 
meaningless. Steady s ta te  solutions, on the  other hand, have been obtained successfully 
by numerous researchers. Chang and Kwak (Ref. 1 0 )  and Kwak, et  a1 (Ref. 11) present 
one the of the most in depth and most successful applications of the method, including 
applications to SSME problems (Ref. 12). 

A Finite Element Method (FEM) which embodies the same general principle as artificial 
compressibility is the penalty function formuation (Ref. 13). This procedure is widely 
used in pure FEM techniques, although many variants have been introduced in an attempt 
to obtain accurate results (for example, Refs. 14, 15). This further serves to illustrate 
the difficulty of obtaining pressures for incompressible flows. 

The artificial compressibility method was considered for use in developing t h e  damping 

seals model, however, the essentially arbitrary nature of 6 in Eq. (3) creates several 
problems. Perhaps the major difficulty is in the use of the variational scheme. Wi th  no 
physical basis for 6 ,  the differencing procedure did not behave well. Other problems 
include the trial and error procedure required to determine 6 ,  and the unavailability of 
an unsteady solution. 

-4 - 
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There are n u m  erous other m ethods for treating the velocity-pressure coupling, such as 

the transformed eqiiations of Solomon and Szymczak (Ref. 16) or the assumed elemental 
"deviatoric stress-velocity-pressure" method of Yang and Atluri (Ref. 17). Few of these 

methods provide a set of physically accurate equations for the primitive variables. Also, 
transient problems can, at best, only be "studied" by iterating for successive steady s ta te  

solutions, which is very costly and inefficient. Numerical damping is also necessary to  

obtain solutions in most of the available methods, including t h e  artificial compressibility 
method. 

A recently developed procedure which attempts to overcome most of these deficiencies 
is presented in Ref. 18. This work develops the pressure solution based on a finite sound 
speed, in other words, a compressible formulation. The compressibility is used to  obtain 
an equation of state, which in turn introduces the pressure into the compressible form of 
the continuity equation. The resulting equation is 

Eq. (4) has been successfully applied in Ref. 18 to both transient and high Reynolds 
number problems. 

The procedure to be used in developing t h e  damping seals model is very similar t o  that of 
Ref. 18. The final equation differs somewhat from Eq. (4) because fewer assumptions 
will be made. The details of the  analysis will be presented in t h e  next section. 

-5- 
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In t h e  development of t h e  compressible VAST code, the  integral  form of the  equations of 
motion a r e  used. Several  advantages of this formulation occur,  as pointed o u t  in Ref. 5. 
The fundamental  equations are: 

continuity: 

/// 2 dV + // p9  d s  = 0 
c v  a t  c s  

momentum: 

energy: 

a PE - -  I/{ - dV + // [ P E ~  + (TP-?) + Q] d s  = 0 
c v  a t  c s  

( 5 )  

( 7 )  

For  this analysis, as with all incompressible methods, t h e  assumption is made  t h a t  P # P 

(T), hence t h e  energy equation (Eq. 7) decouples from t h e  o t h e r  equations. The  equation 
i s  l is ted h e r e  since, if h e a t  t ransfer  or thermal  d a t a  were  desired, Eq. (7) could be solved 

independently for  temperature .  This equation will not be  used in t h e  remainder  of t h e  

analysis as only isothermal  problems will be considered. Since liquid flows are t o  be  
studied, it should also be pointed o u t  t h a t  gravity, if assumed t o  be important ,  is  easily 
included in Eq. (6) as a source term. 

-6 - 



~~ 

CI-F R-0 0 8 8 

Pressure Solution 

As previously discussed, the current approach to the pressure solution is to take 

advantage of the finite sound speed in all fluids, liquid or gas. The procedure is more 
correctly called a slight compressibility method, rather than an incompressible method. 

An equation of state is assumed to exist in the form 

The compressiblity of any fluid is expressed by the bulk modulus of elasticity, 

dP 

and the finite acoustic speed in a liquid is given by 

The equation of state may now be written as 

2 dP = a d p  

To derive the pressure equation, Eq. (11) is primarily used in differential form, however, 

a reference state mus t  also be assumed for integration purposes. This reference state, 
Pr and p r  , mus t  be assumed to be the usual theoretical incompressible values of P and 

Substitution of Eq. (11) into Eq. (5) now yields the 
pressure equation. 
P for the fluid being considered. 

-7 - 



CI-F R-0 08 8 

The convective part of Eq. (12) is written as two terms to facilitate discussion of some 

salient features of the method. First, it should be noted that as the sound speed, a ,  
approaches infinity (the true incompressible case) Eq. (12)  reduces to the standard 

incompressible form of continuity. Another feature is that the artificial compressibility 
method can be viewed as a limiting case of Eq. (12). If the contribution of the pressure 
to the convective terms is discarded and P ra2  = 1 / 6 ,  t hen  Eq. (12) reduces to the 
integral form of Eq. (3). Perhaps the  most important feature is the physical reasoning 

used to obtain Eq. (12). In addition to  more correctly describing t h e  physics of the 
flowfield, this method allows the use of a variationally based dynamic differencing 
scheme. 

Eq. (11) could, and perhaps should also be included in the momentum equations. The 
error introduced by using p = p in Eq. (6)  is essentially zero for steady state r 
solutions, which can be viewed as incompressible solutions. For unsteady solutions, the 

error is of order AP/Pa2 vs. P and, since a is large, this error is assumed to be 
negligible. 

Numerical Analon 

The numerical integration used to solve Eqs. (6) and (12) is based in part on the 

variational procedure developed by Prozan in  Refs. 3-5. This procedure wil l  be 

summarized below, and t h e  application to  the current work will then be discussed. 

The compressible VAST transport equations may  be generalized as 

where 

-8- 
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N o w ,  the domain of integration is subdivided into E finite elements and Eqs. (13) become 

E II 
C ( A U n  A \ ’ / A t ) e  = - C I: 

n ,  e e = l  e = l  
( 1 5 )  

A functional distribution of the variables is assumed over the surfaces of the elements 

and the flux terms Fn,e are evaluated using values from the previous time step. 

The ( AUn AV/ A t  ) e  represent the total accumulation of the n t h  conserved quantity 

within element e. To obtain the conserved variables at  a new t i m e  step, nodes are placed 

at the corners of each element and t h e  ( AUn AIr/At)e are allocated to the various 
nodes. Thus, the conserved quantities at the nodes are determined by assembling the 

contributions from its surrounding elements. This accumulation can be written 

k 
(AUn A V / A t )  = - F 

e = l  ‘ n , e , j  n , e  j ( 1 6 )  

where j is the node number, k is t h e  total number of elements surrounding node j, and t h e  

are the allocation parameters. 
‘n, e ,  j 

The assembled equation, Eq. (16) is analogous to a finite difference expression in which 
the spatial transformations are numerically embedded in t h e  analog. I t  may be 
interpreted as a general form of the finite difference scheme since different finite 
difference algorithms can be derived with selected allocation parameters. The VAST 

differencing procedure differs from other schemes in that i t  does not dictate a fixed 
throughout t h e  course of integration, but rather, changes the parameters 

dynamically in both time and space according to the variational principle. This principle 

requires that the rate of entropy production be maximized. The VAST differencing 

scheme thus  uses t h e  transport equations as equality constraints and dynamically 

determines the allocation parameters to achieve maximum stability of the system. 

n ,  e ,  j 5 

To apply the VAST numerical analog to the current investigation, a procedure for 
determining the allocation parameters siniiiar to t he  procedure of the Kef.  5 miist be 

developed. A first attempt of th i s  development was presented in  Ref. 19. This method 
was not entirely satisfactory, and further research was performed. The entropy 

-9- 
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functional of Ref. 1 9  was further manipulated and the following derivatives were 
obtained: 

'z c l n T  - c -t - -- 
2 T  

a p s  1 
-- =[ 
ap  a 

where c is the specific heat, 

Using Eqs. (17) and (181, the allocation parameters of Eq. (16) are  determined in the same 

manner presented in Ref. 5. This procedure provided good stability for many cases, 
however, some problems were encountered with the pressure equation. Eventually, a 
centered difference scheme was used for the pressure equation for all time and all nodes 
while  continuing to  use Eqs. (18) for the momentum equations. This method has, thus far, 
produced satisfactory results on all the problems attempted, although some damping of 
Eq. (12)  is necessary. 

Turbulence Model 

TO accurately model the damp,,ig seals problem, a turbulence model mus t  be included in 

t h e  code. Turbulent flow is an important parameter in the  performance of the damping 
seals, and roughness is used to produce this flow. Hence, the  model m u s t  ultimately 
include roughness effects. All turbulence models in current use have a considerable 
amount of empiricism included. Even the more advanced Reynolds stress transport 
equations require several empiricai consian ts for closure. Roughness effects iii any 

model are, at best, accounted for by these empirical constants, t hus  it was decided to use 
an algebraic model in the code development. 

-1 0- 
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To develop a turbulence model for use  in the  VAST codes, special  wall e l emen t  funct ions 

w e r e  developcd to avoid using an  excessive number of grid points near  t h e  wall. This  
model was discussed in Ref. 19, but  will be included he re  for completeness. For smooth  
walls and fully developed pipe flow, t h e  following empir ical  logar i thmic  profiles are 
valid. 

9 Y+< 5 
t + u = y  

u = - 3 . 0 5  + 5 . 0  l n ( y  ) ,  5 1 y  5 3 0  

u = 5 . 5  t 2 . 5  l n ( y  ) , y > 3 0  

+ t + 

+ t + 

where  

+ * 
u = u / u  

u*  = 4- 
W 

* 
y + =  u y / v  

and  y is  t h e  d is tance  from t h e  wall. F rom Eq. (19a), t h e  veloci ty  grad ien t  at the  wal l  is  

In t e r m s  of r e a l  d i s tance  f rom the  wall, Eq. (19c) represents  mos t  of t h e  boundary layer,  

t he re fo re  t h e  following computat ional  procedure is employed. A f ic t i tous  wall is  
assumed to  be 0.0005 f e e t  (approximately y+ = 30) away  f rom t h e  real wall and  i t  i s  

assumed t h a t  no flow occurs  be tween these  two walls (i=O) . If a slip boundary 

condition is used, u is de te rmined  f rom t h e  momentum equations, and u* at 0.0005 f e e t  is 
de te rmined  f rom Eq. (19c). Since th i s  equation is not  expl ic i t  in u*, an empir ical  
approximation i s  made: 

( 2 1 )  * 0 . 8 6 7 3 2 5 ,  ( y , v )  0 . 1 3 2 6 7 5  u = 0 . 1 6 6 2 5 2 9  u 
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Eqs. (20) and (21) now give the velocity gradient and shear stress at the wall. An eddy 

viscosity is used to determine both the local shear stress and the variation of this stress 
with distance from the wall, y. 

* uT = 0 . 0 7  u prQ + p 

where r is the radius for pipe flows, and 

Q =  ( y / . 3 r )  , 0 < ( y / r ) < . 3  

Q = 1 . 0  , ( y / r )  2 . 3  

To include roughness in the turbulence model outlined above, the empircal constants of 

Eqs. (19) - (22)  must be changed accordingly. Ref. 20 presents the information necessary 
for these changes. 

-12- 
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RESULTS 

In order to verify the performance of the model during development, several simple two- 
dimensional test cases were run. Results from these problems were presented in  Ref. 
19. Those results were obtained on the Continuum CM-1000 workstation (Intel 8086 

microprocessor). One important conclusion that came from the early runs was the long 
run times associated wi th  the CFL constraint. These run times coupled wi th  the 
geometric necessity to use a large number of grid points to model damping seals, 
dictated a shift i n  the development effort to a mainframe computer. 

Vector izat ion 

The computer code was installed on a CRAY-1S vector processor and extended to  handle 

three-dimensional geometries. In order to  take advantage of the available computing 

power, this version of the code was vectorized. The vector FORTRAN used is identical 
to the language to be used on the MSFC CRAY X-MP. This will allow for installation and 

efficient operation of the code at NASA MSFC. Once t h e  mainframe programming was 
completed the two-dimensional problems presented in Ref. 18 were repeated. Results 

from the  mainframe code were in agreement wi th  the previous results, thus other 
problems wi th  similarities to t h e  damping seals geometry were attempted in order to  
refine the model. 

Rotating Cylinders 

Several cases involving two concentric rotating cylinders were studied. This two- 

dimensional flow is the Couette flow described in Ref. 2 for t h e  damping seals. Both t h e  

differencing scheme and boundary conditions for use in t h e  liquid code were examined 
using this configuration. This study led to the decision to use Eq. (18) with a centered 
scheme for pressure in the  differencing algorithm. The boundary conditions used on t h e  

moving wall were a no-slip condition with a table lookup algorithm to maintain a 
constant rotational velocity a t  t h e  wall. The boundary condition must be modified to  
allow a slip wall when the turbulence model is used, however, the two-dimensional results 
were obtained for a laminar viscosity. 

Veiocity vectors for a 10'slice of the cylinders are shown i n  Figs. i and 2 for both air 
and water as fluids. The surface velocity of t h e  inner cylinder is 200 ft/sec while the 

-1 3-  
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outer cylinder is stationary. These results are compared to the exact solution in Fig. 3. 

The agreement is seen to be quite good. The Reynolds numbers of these problems were 
of order 10 (air) and l o 6  (water). This range is two to three orders of magnitude higher 
than any problems attempted by the majority of existing incompressible codes. One 
reason these large Reynolds numbers can be studied is that the integral formulation, Eqs. 

(5-7), (12), eliminates cell Reynolds number problems. 

The cylinder problem was also run using the compressible VAST code for comparison 

purposes. These results are also shown in Fig. 3. They do not agree as well wi th  the 
exact solution. This disagreement can be traced to the behavior of the pressure 
solution. The initial condition for this problem assumed a constant pressure of 2116 

psf. The pressure after 44,000 iterations is shown in Fig. 4. (For the exact solution, t h e  

outer cylinder pressure is 2119.33 psf). The constant initial condition caused waves to be 

generated in the flowfield. These waves were observed to  "bounce" back and forth 
between t h e  cylinders. The no-slip walls are non-porous to these waves, and the 
absolutely conservative nature of the numerical analog (Ref. 5) coupled wi th  the  absence 
of explicit artificial viscosity do not allow t h e  waves to damp out in  th i s  closed system 

other than through real viscous dissipation. This was verified by running the same 
problem wi th  the exact solution as an initial condition. No waves were generated, and 

the pressure essentially did not vary from the exact solution. 

Similar pressure waves can be observed in t h e  incompressible code. This is clearly 
illustrated by the two waves seen in Fig. 5 for the cylinder problem wi th  water. This 
result together wi th  the velocities (Fig. 3)  tends to support the contention that the 
pressure does not greatly affect the velocity solution for essentially incompressible 
flows. This idea is important to solution procedures which eliminate the pressure 
entirely (for example the  vorticity-stream function formulation) or decouple t h e  pressure 
from the momentum equations. This small dependence is also important to  the 

performance of the artificial compressibility method, as the pressures computed during 
t h e  relaxation are entirely unrealistic. In contrast, Fig. 3 illustrates that Compressible 

solutions, even a t  very low speeds, are sensitive to pressure effects. 

In  an attempt to reduce the propagation of pressure waves i n  a closed system, wall 

boundary conditions were examined which wouid allow these waves to pass through, sucn 
as occurs at  inlets for an open system. This effort was not entirely successful, thus  some 
damping is used in the pressure differencing algorithm. 

-16- 
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r ,  
i n  

E x a c t  S o l u t i o n  

0 Water ,  S t e p  5 0 , 0 0 0 ,  AT= . 0 0 4 0  s e c  

El A i r ,  S t e p  2 5 , 0 0 0 ,  AT= . 0 0 6 3  s e c  
2 . 0 0  

A C o m p r e s s i b l e  VAST c o d e  
S t e p  2 5 , 0 0 0 ,  AT= . 0 4 2  s e c  

1 . 9 8  

1 . 9 6  

1 . 9 4  

1 . 9 2  

1 . 9 0  

1 .88  

1 . 8 6  

1 . 8 4  

1 , 8 2  

1 . 8 0  

0 .0  2 0  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  1 6 0  1 8 0  2 0 0  

S p e e d ,  f t / s e c  

F i g .  3 .  R a d i a l  V e l o c i t y  P r o f i l e  f o r  R o t a t i n g  C y l i n d e r s .  
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The cylindcr results shown in Figs. 1 - 5 were obtained using a mesh of 15 x 231 (radial x 
circumferential) nodes. Thus, an element side is 1.5Oof arc in  length. To determine the 
effect of mesh size, the same configuration (with air as the f luid)  was repeated using a 

1 5  x 91 mesh, or 4 '  length of each element. This solution showed poor agreement w i t h  
the exact solution, proving that good circumfercntial resolution is required a t  least when 
the flow is circumferential in nature. 

Three-Dim ensional Results 

After refining the model based on the two-dimensional rotating cylinder studies, a three- 
dimensional damping seals configuration was modeled and preliminary results obtained. 

The grid for t h e  seal, based on the test configuration to be run, is shown in Fig. 6. The 
gap between the cylinders in magnified in this drawing; actual dimensions are 0.02 inch 

gap, 1.8 inch rotor diameter and 1.8 inch axial length. The grid resolution is 11x105~26, 
radial, circumferential and axial, respectively, for a total of 30,030 nodes. This 

resolution produces typical element length ratios illustrated i n  Fig. 6. This element 
shape in conjunction wi th  the two-dimensional mesh study, immediately suggest that 

more nodes should be used. However, available computer storage on the CRAY-1S will  

allow 31,000 nodes max imum for this problem. Expanded inlets and outlets to the seal 
should also be included in an in-depth study, but again, this requires additional nodes. 
This node limitation will be alleviated by use of the MSFC CRAY X-MP, which will have 

more than twice the storage available on the CRAY-1S used in  this study. I t  should be 
pointed out that the large number of nodes required is as much  of a physical geometry 
requirement, as i t  is a numerical requirement. 

The fluid in the three-dimensional study is water ( pr=1.89936 slugs/ft3, Pr=2116 psf) a t  
6 1 4 O  R, and the turbulence model was used. The upstream axial boundary condition was a 
fixed inlet wi th  the velocity profiles (both axial and radial) based on a 1 / 7  power law 
profile. The downstream axial boundary condition is a constant integrated mass flow in 
the axial direction. The rotor speed is 345.6 ft/sec and the axial static pressure drop 
through the seal is 2000 psi. 

Preliminary results for this problem are shown in Figs. 7-9. This is a t  an early iteration 

step, not at  a steady state. Further results have not been obtained due to needed 
problem refinement that can only be provided by the CRAY X-RIP. Furthermore, 
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cxperimental data is not yet available for comperisons. Fig. 7 shows the velocity vectors 

on the rotor surface for a 105' slice which has been "unrolled". The initial condition was 

the 345.6 ft/sec speed circumferentially, with 0.0 ft/sec axial flow at the wall. The 
development of the axial flow based on the "slip condition" in  the turbulence model is 

seen to be quite good. Since the upstream inlet (top of figure) is held at  zero axial 

velocity although there is a circumferential component (which does not show on the scale 
used), t h e  flow must develop along t h e  length of the rotor. This development is also 
proceeding well. This result suggests that, to get the proper characteristics in  t h e  seal, 
the upstream boundary condition should be changed, or else some type of inlet extension 
should be included, preferably the latter choice to more correctly model t h e  test  
configuration. 

Studying the circumferential direction at a fixed axial location in Fig. 7, some 

unexpected variations in t h e  velocity vectors are seen. An examination of the full 360' 

data shows that this pattern repeats at  exactly 90' intervals. This suggests a dependence 
on the grid resolution and the element shape, as discussed on the two-dimensional 
problem, and seen in Fig. 6. 

A t  an axial station in the fully developed flow region of Fig. 7 (at approximately 75 ?6 of 

the seal length) velocities and pressures are plotted in Figs. 8 and 9, respectively. The 
axial component of the velocity is not illustrated in Fig. 8. Once again, the velocities at 
the walls are seen to be different from the cylinder velocities. This is expected due to  
the turbulence model, since this is actually the velocity a t  y+ = 30 away from the walls. 

The turbulent profile is seen here to be developing quite well. Figure 9 shows the 
pressures at the same surfaces. The pressures are behaving well, wi th  no large waves 
propagating a t  t h i s  location. 

Com putational Requirements 

From the two- and three-dimensional results just discussed, mainframe computer 
requirements can be established for t h e  code. A s  previously mentioned, storage 

requirements are large and indeed, the l imi t  of 31,000 nodes for three-dimensional, 
turbulent problems is too small. Considerably larger numbers of nodes can be used for 
+k"AQ- L l l l  cL d;lt,cl,,;onal ImAnr, This mdal limit !,vi11 m ~ r e  
than double on a CRAY X-MP. CPU times for a CRAY-lS computer have been 
established as follows: 

laminar, or any t;ve-dimensional problems. 
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two-dimensional, viscous, laminar problems, 1.8 x sec/node/step 
three-dimensional, viscous, turbulent problems, 8.9 x 1 0-5 sec/node/step 

These times will be approximately a factor of 10 faster on a C R A Y  X-MP. Comparison 

of these resource requirements wi th  other CFD codes show that they are  very  similar, 
and perhaps even smaller than existing methods (see for example Ref. 12). 
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CONCLUSIONS 

One of the principle objectives of the research work reported herein was to produce a 

high Reynolds number, explicit CFD code for liquid and/or incompressible flow regimes. 

Considerable effort was expended on this task wi th  good results. The code which has 
been developed has been applied to several problems, with results comparable to any 
existing code, including the much studied artificial compressibility codes. Computer 
requirements necessary to generate solutions is also comparable to  or less than 

requirements of other codes. However, flow problems at  much higher Reynolds numbers 
than exist in the majority of the literature have been presented. There is much room for 

improvement in the model to further increase its utility. In particular, the proper 
accounting for pressure in the variational approach, and consequently the differencing 

scheme, would enhance the stability and overall performance of the method. 

Two-dimensional problems similar in  character to the damping seals have been studied, 

and the computer model refined based on these results. Preliminary studies of a three- 

dimensional seal model have also been made. However, several comparisons with other 
seal analyses have not been made. In particular, the anticipated experimental data which 

is important to the model verification has not become available during the course of this 

study. Liquid oxygen and liquid hydrogen studies(which are presented in t h e  bulk flow 

analysis of Ref. 2) are not good problems for use in  model refinement due to  the 
extreme physical characteristics of the fluids. Such refinement should be made prior to 
performing parametric studies because of the large amount of computer resources 
necessary to perform these studies. 

To improve the efficiency of t h e  computer code, so that the experimental and 

parametric studies can be performed once the  data becomes available, the code has been 
vectorized and developed to  run on t h e  CRAY X-MP to be installed a t  MSFC. This will 

also help provide NASA in-house capabilities to  model turbomachinery. 
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